Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
2.
BMJ Open ; 13(12): e072291, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135320

RESUMEN

OBJECTIVE: Protein-energy malnutrition and the subsequent muscle wasting (sarcopenia) are common ageing complications. It is knowing to be also associated with dementia. Our programme will test the cytoprotective functions of vitamin E combined with the cortisol-lowering effect of chocolate polyphenols (PP), in combination with muscle anabolic effect of adequate dietary protein intake and physical exercise to prevent the age-dependent decline of muscle mass and its key underpinning mechanisms including mitochondrial function, and nutrient metabolism in muscle in the elderly. METHODS AND ANALYSIS: In 2020, a 6-month double-blind randomised controlled trial in 75 predementia older people was launched to prevent muscle mass loss, in respond to the 'Joint Programming Initiative A healthy diet for a healthy life'. In the run-in phase, participants will be stabilised on a protein-rich diet (0.9-1.0 g protein/kg ideal body weight/day) and physical exercise programme (high-intensity interval training specifically developed for these subjects). Subsequently, they will be randomised into three groups (1:1:1). The study arms will have a similar isocaloric diet and follow a similar physical exercise programme. Control group (n=25) will maintain the baseline diet; intervention groups will consume either 30 g/day of dark chocolate containing 500 mg total PP (corresponding to 60 mg epicatechin) and 100 mg vitamin E (as RRR-alpha-tocopherol) (n=25); or the high polyphenol chocolate without additional vitamin E (n=25). Muscle mass will be the primary endpoint. Other outcomes are neurocognitive status and previously identified biomolecular indices of frailty in predementia patients. Muscle biopsies will be collected to assess myocyte contraction and mitochondrial metabolism. Blood and plasma samples will be analysed for laboratory endpoints including nutrition metabolism and omics. ETHICS AND DISSEMINATION: All the ethical and regulatory approvals have been obtained by the ethical committees of the Azienda Ospedaliera Universitaria Integrata of Verona with respect to scientific content and compliance with applicable research and human subjects' regulation. Given the broader interest of the society toward undernutrition in the elderly, we identify four main target audiences for our research activity: national and local health systems, both internal and external to the project; targeted population (the elderly); general public; and academia. These activities include scientific workshops, public health awareness campaigns, project dedicated website and publication is scientific peer-review journals. TRIAL REGISTRATION NUMBER: NCT05343611.


Asunto(s)
Chocolate , Desnutrición Proteico-Calórica , Anciano , Humanos , Proteínas en la Dieta , Vitamina E/uso terapéutico , Ejercicio Físico , Ensayos Clínicos Controlados Aleatorios como Asunto
3.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37762042

RESUMEN

Cells are exposed to various internal and external factors that can cause damage over time [...].


Asunto(s)
Vesículas Extracelulares , Envejecimiento , Enfermedad
4.
Free Radic Biol Med ; 208: 657-671, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37739140

RESUMEN

Aging is a complex biological process characterized by a progressive decline in cellular and tissue function, ultimately leading to organismal aging. Stem cells, with their regenerative potential, play a crucial role in maintaining tissue homeostasis and repair throughout an organism's lifespan. Mitochondria, the powerhouses of the cell, have emerged as key players in the aging process, impacting stem cell function and contributing to age-related tissue dysfunction. Here are discuss the mechanisms through which mitochondria influence stem cell fate decisions, including energy production, metabolic regulation, ROS signalling, and epigenetic modifications. Therefore, this review highlights the role of mitochondria in driving stem cell senescence and the subsequent impact on tissue function, leading to overall organismal aging and age-related diseases. Finally, we explore potential anti-aging therapies targeting mitochondrial health and discuss their implications for promoting healthy aging. This comprehensive review sheds light on the critical interplay between mitochondrial function, stem cell senescence, and organismal aging, offering insights into potential strategies for attenuating age-related decline and promoting healthy longevity.


Asunto(s)
Senescencia Celular , Mitocondrias , Senescencia Celular/fisiología , Mitocondrias/metabolismo , Diferenciación Celular , Células Madre/metabolismo
5.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37108168

RESUMEN

The mitochondria play a crucial role in cellular metabolism, reactive oxygen species (ROS) production, and apoptosis. Aberrant mitochondria can cause severe damage to the cells, which have established a tight quality control for the mitochondria. This process avoids the accumulation of damaged mitochondria and can lead to the release of mitochondrial constituents to the extracellular milieu through mitochondrial extracellular vesicles (MitoEVs). These MitoEVs carry mtDNA, rRNA, tRNA, and protein complexes of the respiratory chain, and the largest MitoEVs can even transport whole mitochondria. Macrophages ultimately engulf these MitoEVs to undergo outsourced mitophagy. Recently, it has been reported that MitoEVs can also contain healthy mitochondria, whose function seems to be the rescue of stressed cells by restoring the loss of mitochondrial function. This mitochondrial transfer has opened the field of their use as potential disease biomarkers and therapeutic tools. This review describes this new EVs-mediated transfer of the mitochondria and the current application of MitoEVs in the clinical environment.


Asunto(s)
Vesículas Extracelulares , Mitocondrias , Mitocondrias/metabolismo , ADN Mitocondrial/genética , Especies Reactivas de Oxígeno/metabolismo , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo
6.
Redox Biol ; 62: 102668, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36965438

RESUMEN

Extracellular vesicles' biogenesis, shedding, and uptake are redox-sensitive. Indeed, oxidative stress conditions influence extracellular vesicles' release and content, which can modulate the redox status of the receiving cells. In this study, we aimed to assess the effect of extracellular vesicles from human dental pulp stem cells cultured under 21% O2 (senescent stem cells) on human dental pulp stem cells cultured under 3% O2 (young stem cells). Extracellular vesicles were isolated by ultracentrifugation from senescent stem cells and prepared for the treatment of young stem cells at a final concentration of 10 µg/mL. Cells were analyzed for antioxidant gene expression, mitochondrial bioenergetic parameters, ROS production, culture kinetics, and apoptosis. The results show that extracellular vesicles from senescent stem cells induce overexpression of antioxidant genes (MnSOD, CAT, and GPx) in young stem cells, which show an increased non-mitochondrial oxygen consumption, accompanied by reduced maximal respiration and spare respiratory capacity without altering mitochondrial membrane potential. This is accompanied by improved cell proliferation, viability, and migration rates and a reduction of apoptosis. In conclusion, extracellular vesicles from senescent stem cells trigger an adaptive response in young stem cells which improves their antioxidant defenses and their proliferation, migration, and survival rates. This suggests that extracellular vesicles can modulate the cells' microenvironment and the balance between proliferation and senescence.


Asunto(s)
Antioxidantes , Vesículas Extracelulares , Humanos , Antioxidantes/metabolismo , Células Cultivadas , Células Madre/metabolismo , Apoptosis
7.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36982182

RESUMEN

Solid organ transplantation (SOT) is a life-saving treatment for end-stage organ failure, but it comes with several challenges, the most important of which is the existing gap between the need for transplants and organ availability. One of the main concerns in this regard is the lack of accurate non-invasive biomarkers to monitor the status of a transplanted organ. Extracellular vesicles (EVs) have recently emerged as a promising source of biomarkers for various diseases. In the context of SOT, EVs have been shown to be involved in the communication between donor and recipient cells and may carry valuable information about the function of an allograft. This has led to an increasing interest in exploring the use of EVs for the preoperative assessment of organs, early postoperative monitoring of graft function, or the diagnosis of rejection, infection, ischemia-reperfusion injury, or drug toxicity. In this review, we summarize recent evidence on the use of EVs as biomarkers for these conditions and discuss their applicability in the clinical setting.


Asunto(s)
Vesículas Extracelulares , Trasplante de Órganos , Daño por Reperfusión , Humanos , Trasplante de Órganos/efectos adversos , Donantes de Tejidos , Daño por Reperfusión/diagnóstico , Biomarcadores
8.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36768664

RESUMEN

The native role of extracellular vesicles (EVs) in mediating the transfer of biomolecules between cells has raised the possibility to use them as therapeutic vehicles. The development of therapies based on EVs is now expanding rapidly; here we will describe the current knowledge on different key points regarding the use of EVs in a clinical setting. These points are related to cell sources of EVs, isolation, storage, and delivery methods, as well as modifications to the releasing cells for improved production of EVs. Finally, we will depict the application of EVs therapies in clinical trials, considering the impact of the COVID-19 pandemic on the development of these therapies, pointing out that although it is a promising therapy for human diseases, we are still in the initial phase of its application to patients.


Asunto(s)
COVID-19 , Vesículas Extracelulares , Humanos , Pandemias , Sistemas de Liberación de Medicamentos/métodos , Excipientes
9.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36835661

RESUMEN

In recent decades, extracellular vesicles have been recognized as "very important particles" (VIPs) associated with aging and age-related disease. During the 1980s, researchers discovered that these vesicle particles released by cells were not debris but signaling molecules carrying cargoes that play key roles in physiological processes and physiopathological modulation. Following the International Society for Extracellular Vesicles (ISEV) recommendation, different vesicle particles (e.g., exosomes, microvesicles, oncosomes) have been named globally extracellular vesicles. These vesicles are essential to maintain body homeostasis owing to their essential and evolutionarily conserved role in cellular communication and interaction with different tissues. Furthermore, recent studies have shown the role of extracellular vesicles in aging and age-associated diseases. This review summarizes the advances in the study of extracellular vesicles, mainly focusing on recently refined methods for their isolation and characterization. In addition, the role of extracellular vesicles in cell signaling and maintenance of homeostasis, as well as their usefulness as new biomarkers and therapeutic agents in aging and age-associated diseases, has also been highlighted.


Asunto(s)
Micropartículas Derivadas de Células , Exosomas , Vesículas Extracelulares , Exosomas/fisiología , Micropartículas Derivadas de Células/fisiología , Transducción de Señal
10.
Biomolecules ; 13(1)2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36671550

RESUMEN

The exponential growth in the elderly population and their associated socioeconomic burden have recently brought aging research into the spotlight. To integrate current knowledge and guide potential interventions, nine biochemical pathways are summarized under the term hallmarks of aging. These hallmarks are deeply inter-related and act together to drive the aging process. Altered intercellular communication is particularly relevant since it explains how damage at the cellular level translates into age-related loss of function at the organismal level. As the main effectors of intercellular communication, extracellular vesicles (EVs) might play a key role in the aggravation or mitigation of the hallmarks of aging. This review aims to summarize this role and to provide context for the multiple emerging EV-based gerotherapeutic strategies that are currently under study.


Asunto(s)
Vesículas Extracelulares , Humanos , Anciano , Vesículas Extracelulares/metabolismo , Envejecimiento , Comunicación Celular
11.
Subcell Biochem ; 102: 271-311, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36600137

RESUMEN

Ageing is a complex process characterized by deteriorated performance at multiple levels, starting from cellular dysfunction to organ degeneration. Stem cell-based therapies aim to administrate stem cells that eventually migrate to the injured site to replenish the damaged tissue and recover tissue functionality. Stem cells can be easily obtained and cultured in vitro, and display several qualities such as self-renewal, differentiation, and immunomodulation that make them suitable candidates for stem cell-based therapies. Current animal studies and clinical trials are being performed to assess the safety and beneficial effects of stem cell engraftments for regenerative medicine in ageing and age-related diseases.Since alterations in cell-cell communication have been associated with the development of pathophysiological processes, new research is focusing on the modulation of the microenvironment. Recent research has highlighted the important role of some microenvironment components that modulate cell-cell communication, thus spreading signals from damaged ageing cells to neighbor healthy cells, thereby promoting systemic ageing. Extracellular vesicles (EVs) are small-rounded vesicles released by almost every cell type. EVs cargo includes several bioactive molecules, such as lipids, proteins, and genetic material. Once internalized by target cells, their specific cargo can induce epigenetic modifications and alter the fate of the recipient cells. Also, EV's content is dependent on the releasing cells, thus, EVs can be used as biomarkers for several diseases. Moreover, EVs have been proposed to be used as cell-free therapies that focus on their administration to slow or even reverse some hallmarks of physiological ageing. It is not surprising that EVs are also under study as next-generation therapies for age-related diseases.


Asunto(s)
Vesículas Extracelulares , Animales , Vesículas Extracelulares/metabolismo , Células Madre/metabolismo , Diferenciación Celular , Biomarcadores/metabolismo , Senescencia Celular
12.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36498960

RESUMEN

Aging is associated with an alteration of intercellular communication. These changes in the extracellular environment contribute to the aging phenotype and have been linked to different aging-related diseases. Extracellular vesicles (EVs) are factors that mediate the transmission of signaling molecules between cells. In the aging field, these EVs have been shown to regulate important aging processes, such as oxidative stress or senescence, both in vivo and in vitro. EVs from healthy cells, particularly those coming from stem cells (SCs), have been described as potential effectors of the regenerative potential of SCs. Many studies with different animal models have shown promising results in the field of regenerative medicine. EVs are now viewed as a potential cell-free therapy for tissue damage and several diseases. Here we propose EVs as regulators of the aging process, with an important role in tissue regeneration and a raising therapy for age-related diseases.


Asunto(s)
Vesículas Extracelulares , Animales , Envejecimiento , Comunicación Celular/fisiología , Células Madre , Medicina Regenerativa
13.
Sci Adv ; 8(42): eabq2226, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36260670

RESUMEN

Aging is associated with an increased risk of frailty, disability, and mortality. Strategies to delay the degenerative changes associated with aging and frailty are particularly interesting. We treated old animals with small extracellular vesicles (sEVs) derived from adipose mesenchymal stem cells (ADSCs) of young animals, and we found an improvement in several parameters usually altered with aging, such as motor coordination, grip strength, fatigue resistance, fur regeneration, and renal function, as well as an important decrease in frailty. ADSC-sEVs induced proregenerative effects and a decrease in oxidative stress, inflammation, and senescence markers in muscle and kidney. Moreover, predicted epigenetic age was lower in tissues of old mice treated with ADSC-sEVs and their metabolome changed to a youth-like pattern. Last, we gained some insight into the microRNAs contained in sEVs that might be responsible for the observed effects. We propose that young sEV treatment can promote healthy aging.

14.
Front Cardiovasc Med ; 9: 854726, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498012

RESUMEN

Vascular calcification is an irreversible pathological process associated with a loss of vascular wall function. This process occurs as a result of aging and age-related diseases, such as cardiovascular and chronic kidney diseases, and leads to comorbidities. During these age-related diseases, the endothelium accumulates senescent cells, which stimulate calcification in vascular smooth muscle cells. Currently, vascular calcification is a silent pathology, and there are no early diagnostic tools. Therefore, by the time vascular calcification is diagnosed, it is usually untreatable. Some mediators, such as oxidative stress, inflammation, and extracellular vesicles, are inducers and promoters of vascular calcification. They play a crucial role during vascular generation and the progression of vascular calcification. Extracellular vesicles, mainly derived from injured endothelial cells that have acquired a senescent phenotype, contribute to calcification in a manner mostly dependent on two factors: (1) the number of extracellular vesicles released, and (2) their cargo. In this review, we present state-of-the-art knowledge on the composition and functions of extracellular vesicles involved in the generation and progression of vascular calcification.

15.
Antioxidants (Basel) ; 11(5)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35624728

RESUMEN

Oxidative stress refers to an imbalance between oxidant and antioxidant molecules, which is usually associated with oxidative damage to biomolecules and mitochondrial malfunction. Redox state-related parameters include (1) the direct measurement of ROS, (2) the assessment of the antioxidant defense status, and (3) the analysis of the resulting oxidative damage to molecules. Directly measuring ROS appears to be the preferred method among scientists, but most ROS are extremely unstable and difficult to measure. The processes of determining both the oxidative damage to biomolecules and the antioxidant system status, although both are indirect approaches, provide a reliable method to measure oxidative stress on a given sample. Recently, the Seahorse XF and the Oroboros O2k systems have provided new insights into the redox state from a more dynamic point of view. These techniques assess mitochondrial oxidative phosphorylation function and bioenergetics on isolated mitochondria, cultured cells, or specific tissues such as permeabilized fibers. This review describes a range of methodologies to measure redox state-related parameters, their strengths, and their limitations. In conclusion, all these techniques are valid and none of them can be replaced by another. Indeed, they have the potential to complement each other for a complete evaluation of the redox state of a given sample.

16.
J Gerontol A Biol Sci Med Sci ; 77(10): 1931-1938, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35640160

RESUMEN

Centenarians exhibit extreme longevity and compression of morbidity and display a unique genetic signature. Centenarians' offspring seem to inherit centenarians' compression of morbidity, as measured by lower rates of age-related pathologies. We aimed to ascertain whether centenarians' offspring are less frail and whether they are endowed with a "centenarian genetic footprint" in a case-control study, matched 1:1 for gender, age ±5 years, and place of birth and residence. Cases must have a living parent aged 97 years or older, aged 65-80 years, community dwelling, not suffering from a terminal illness, or less than 6 months of life expectancy. Controls had to meet the same criteria as cases except for the age of death of their parents (not older than 89 years). Centenarians were individuals 97 years or older. Frailty phenotype was determined by Fried's criteria. We collected plasma and peripheral blood mononuclear cells from 63 centenarians, 88 centenarians' offspring, and 88 noncentenarians' offspring. miRNA expression and mRNA profiles were performed by the GeneChip miRNA 4.0 Array and GeneChip Clariom S Human Array, respectively. We found a lower incidence of frailty among centenarians' offspring when compared with their contemporaries' noncentenarians' offspring (p < .01). Both miRNA and mRNA expression patterns in centenarians' offspring were more like those of centenarians than those of noncentenarians' offspring (p < .01). In conclusion, centenarians' offspring are less frail than age-matched noncentenarians' offspring, and this may be explained by their unique genetic endowment.


Asunto(s)
Fragilidad , MicroARNs , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Centenarios , Anciano Frágil , Fragilidad/epidemiología , Fragilidad/genética , Humanos , Leucocitos Mononucleares , Longevidad/genética , MicroARNs/genética , ARN Mensajero , Transcriptoma
17.
Antioxidants (Basel) ; 11(4)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35453386

RESUMEN

Aging is a risk factor for several diseases, including cardiovascular disease, type 2 diabetes, hypertension, cancer, osteoarthritis, and Alzheimer; oxidative stress is a key player in the development and progression of aging and age-associated diseases [...].

18.
Free Radic Biol Med ; 183: 127-137, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35346775

RESUMEN

Genistein is a phytoestrogen that, due to its structural similarity with estrogen, can both mimic and antagonize estrogen effects. Early analysis proved that at high concentrations, genistein inhibits breast cancer cell proliferation, thereby suggesting an anticancer activity. Since then, many discoveries have identified the genistein mechanism of action, including cell cycle arrest, apoptosis induction, as well as angiogenesis, and metastasis inhibition. In this review, we aim to discuss the multimodal action of genistein as an antioxidant, anti-inflammatory, anti-amyloid ß, and autophagy promoter, which could be responsible for the genistein beneficial effect on Alzheimer's. Furthermore, we pinpoint the main signal transduction pathways that are known to be modulated by genistein. Genistein has thus several beneficial effects in several diseases, many of them associated with age, such as the above mentioned Alzheimer disease. Indeed, the beneficial effects of genistein for health promotion depend on each multimodality. In the context of geroscience, genistein has promising beneficial effects due to its multimodal action to treat age associated-diseases.


Asunto(s)
Enfermedad de Alzheimer , Genisteína , Envejecimiento , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Puntos de Control del Ciclo Celular , Genisteína/farmacología , Genisteína/uso terapéutico , Humanos
19.
Mech Ageing Dev ; 204: 111665, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35307412

RESUMEN

Geroprotection is defined as protection from the adverse effects of aging. The need for geroprotection implies changes towards individually tailored interventions that preserve an individual's independence, physical function, and cognition. Genistein, a phytoestrogen obtained from soya, has been reported to have beneficial properties on age-related diseases such as neurodegenerative and cardiovascular diseases or cancer. Indeed, genistein is a multimodal agent: it acts as a cancer protective agent, promoting apoptosis and cell cycle arrest, and inhibiting angiogenesis and metastasis, but it also acts as an antioxidant, anti-inflammatory, and anti-amyloid-ß and autophagy promoter. Altogether, these properties make genistein a possible treatment for the specific aspects of age-related diseases such as hypertension, metabolic diseases, Alzheimer's disease, and osteoporosis.


Asunto(s)
Genisteína , Neoplasias , Péptidos beta-Amiloides/metabolismo , Genisteína/farmacología , Genisteína/uso terapéutico , Gerociencia , Humanos , Fitoestrógenos/farmacología , Fitoestrógenos/uso terapéutico
20.
Mech Ageing Dev ; 200: 111596, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34774606

RESUMEN

Soya consumption can decrease oxidative stress in animal models. Moreover, phytoestrogens such as genistein, present in soya, can mimic some of the beneficial effects of estrogens and are devoid of significant side effects, such as cancer. In this study, we have performed a controlled lifelong study with male OF1 mice that consumed either a soya-free diet or a soya-rich diet. We show that, although we found an increase in the expression and activity of antioxidant enzymes in soya-consuming mice, it did not increase lifespan. We reasoned that the soya diet could not increase lifespan in a very healthy population, but perhaps it could extend health span in stressed animals such as type 2 diabetic Goto Kakizaki (GK) rats. Indeed, this was the case: we found that male GK rats consuming a soya-rich diet developed the disease at a lower rate and, therefore, lived longer than soya-free diet-consuming rats.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Glycine max , Isoflavonas/farmacología , Longevidad/efectos de los fármacos , Alimentación Animal , Animales , Antioxidantes/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Fitoestrógenos/farmacología , Ratas , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...